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ABSTRACT

Background. The aim of the present study was to address therdironal
imbalances in fractal geometry, define the modifiagacity dimension, calculate its
value, relate its value with the scaling exponert show that such a definition
satisfies basic demands of physics, before altliimensional balance in
mathematical equations used in applied sciences.

Methods. The study was performed using the basic rules fractal geometry,
I'HOpital's theorem and other relevant factsn geometry and calculus.

Results. It was offered the quantitative determinationtdd self-similarity using the
von Koch fractal set as an examplde main result was also the formula for the
modified capacity dimension and its relationshiphi® scaling exponent and fractal
dimension.

Conclusion. The text includes some important modifications addantages in
fractal theory and allows better communication lestwfractal geometry and wide
readership. It is important to notice that theselifications and quantificationsid

not affect already known facts in fractal geometry.



BACKGROUND

Fractal geometry has proven to be a useful toahaiysis of various
phenomena in numerous natural sciences [1]. Althaulgas been widely applied
and used for quantitative morphometric studiesniyian calculating the fractal
dimensions of objects [2], there are still someesnlved issues that need to be
addressed. Since some concepts of fractal geometigetermined descriptively
and/or qualitatively, this paper offers their mesact mathematical definitions or
explanations.

Although standard quantitative methods in sciemedbased on classical
Euclidean geometry [3], fractal geometry is devebbps a new geometry of nature
[2, 4-6]. It was conceived in 1975 by Benoit B. Matbrot [7], with the aim to
describe the complexity and irregularity of shaged processes in nature [1]. Early
work on fractal geometry showed that most commardjogical patterns were
characterized by fractal geometry [1, 8-12]. Umdov fractal geometry is being used
in diverse research areas [13-16] and is provirgetan increasingly useful tool.

When the physical or biological problem is statednathematical terms,
dimensional balance should be a routine part ofthation of any problem.
Exponents and logarithms are always dimensionlEgs YWhen dimensioned
guantities appear in exponents or in logarithmsy thhust combine with other
dimensioned quantities so that their quotient odpct is dimensionless. It seems
that some of the authors who work in biomedicatisces do not take care of these
facts. The problem is particularly distinct in afig the fractal dimensions [1, 11,
18, 19]. Fortunately, there are some exceptions42 One of the main aims of the
present study is to define and discuss physicaliyect modified capacity dimension,

and relate it with the scaling exponent and fragiialension.

METHODS AND RESULTS



The fractal set

Fractal geometry was conceived in 1975 by Mande[@ioafter his extensive
work describing the complexity of forms and proessis nature [1]. Nowadays
fractal geometry is proving to be an increasinggful tool for characterizing
biological and other patterns [2, 6, 15, 22, 23].

Fractals are classified ingpeometricalandstatistical[4, 5, 22, 23]. Each
geometrical fractaBhould be considered as an infinite ordered sitofal pieces
defined on a metric space. To determine a fraetal/s need to specify four things
[1, 11, 22]: (1) theshapeof a starting object - thiaitiator, (2) theiterated algorithm
- enabling its iterative application on the iniiaand then, repeatedly, on all obtained
objects (thegenerator$, (3) theconditions- which these generators should satisfy,
before all, the properties eélf-similarity, scalingandscale-invarianceand (4) the
fractal dimensiorD - as the main quantifier to measgmnplexityof the objects. In
that case, such objects (generators) are cpilegfdgactals[1, 3, 5]. The final result of
such infinite procedure is thienit fractal [4, 7]. The initiator, prefractals and limit
fractal represent thgeometrical fractal setl1, 24]

Basic definitions and laws &factal planimetrycan be demonstrated on some
classical fractal models [3, 11]. For that purpagechose thé&iadic (snowflake) von

Koch curve set

Von Koch fractal set

The sequential construction of the von Koch cuetebggins with thenitiator,
which is an equilateral triangle of the side lengt{Fig. 1A). Theiterated algorithm
to generate the set of the von Koch curves (knosyrefractalg is to recursively
reduce the straight line segment (or $kalg by 1/3 exchanging repeatedly the
middle third of each side of the initiator, or &peding generator, with two sides of a
smaller, equilateral triangle whose side is onedttiie length of a previous side. The
result after the first iteration (tretage of construction= 1) is shown in Fig. 1B, and



that after the second iteration (the stage of coosbonz = 2) in Fig. 1C.

Continuation of this process results in tingit von Koch curve

For the von Koch generators, the length of a segatathez” stage of

constructioni(,) and the number of segments at the same shgpar€, respectively,
r,=-=2, N, =33, (1)

wherer, is the side length of the initiator (Fig. 1A). Tlemgth of the fractal curve,
actually the perimeter since the curve is closkg, (s defined as a product of the

number of segments and the length of a segmetiite af stage of construction,

Lz = Nz |]z = 3r0 [ﬁgj ' (2)

The inverse power law

From Eq. (2) it is evident that the perimeter @& tton Koch prefractals
diverges ag approaches infinity. If along the horizontal caoede axis we put the
valuesr, = 1/3 forz=0,1,2,3, ... and along the vertical coordinais the values of
L, = 3-(4/3J also forz=0,1,2,3, ..., and fit the power function to thdséa using
Microsoft Excel software, the graph shown in Figs Bbtained. The corresponding

fitting parameters are also carried out and shawn i

L:3

z

with the coefficients of determinatid®f = 1 and where, = 1 cm for visual clarity.
Generally, if we wish to expre&sas a function off for similar fractal set, two
constants of proportionality:(@ndp) should be used, thus the length can be written

as

L=2. (4)

a

r

The valuep is theprefactoranda is thescaling exponentrom Eq. (3) it is seen that

for the von Koch fractal s¢t= 3 ando = 0.262. We say that the length of a curve (a



prefractal)scaleswith the length of the corresponding fractal segin@r,
mathematicallyl, is a unique function at,.

The simplest scaling relationship has the powerftaw [1]. The
mathematical form of such scaling isiamersepower law scalindEqg. (4)). It
describes how a propertyof the system (say a perimeter of the von Koch set
depends on the scalat which it is measured [1]. Thus, this scalinigtrenship
shows how the perimeter of a prefractal dependb®@irength of its segment: the
smaller the length of the segment, the larger greneter. Sincé = N'r (the
expression known as the Richardson-Mandelbrot exuf20]), from Eq. (4) it
follows that

N =40 & (5)

Geometrical self-similarity

The object’s property known aglf-similaritywas first coined by Mandelbrot
[7] and can bgeometricalor statistical[1, 11, 24].

A fractal pattern is said to lgeeometrically self-similaif each small piece of it
Is an exact replica (i.e. “duplicate”) of the wilecobject [1, 4]. Thus, the self-
similarity qualitatively means that every smallg@eof anobject resembles the whole
object [1, 11]. This definition of the concept ‘geetrical self-similarity’ should be
guantified since small pieces that constitute genoa or natural objects are rarely
identical copies of the whole object [22].

We have offered a more exact interpretation ofdeiscriptive definition
introducing agenerating elemertdf a generator as a “small piece” [5]. A generaor
usually made up of straight-line segments (foransg, see Fig. 1). A particular and
logical concatenation of some segments of a gemrecatild be thought of as the
generating elemerjfil] of a generator if the whole object can be ptately built
with such elements by their translations and/catrons.

In our example shown in Fig. 1 the generators efivitn Koch prefractals, at

the first and second stages of construction, haegénerating elements made up of



four equal segments each, as shown as details Iledodrawings in Fig. 1B and C.
For example, the drawing in Fig. 1B can be sub@giahto three generating
elements, that in Fig. 1C into 12 elements, andnso

Two generating elements of any two generatorsfrdaal set can be
geometrically similar or not. According to the dtiion of similarity in Euclidean
planimetry, two generating elements of the genesabstagezandz + 1 (say, those
in Fig. 1B and C) are similar to each other ift(@ ratio of the measure of a segment
of the generating element at stage 1 and the measure of the corresponding
segment of the element at stage constant for all pairs of corresponding segsent
(e.g., for the four pairs of segments of the twontimmed details in Fig. 1) and for all
z, and (b) the angles between the pairs of correBpgrsegments of the two
generating elements are congruent. If the gengratements of the generators at
stagexz andz + 1 are similar for everg, we say that the whole class of the generators
Is geometrically self-similar, or, that this seshhe property ojeometricakself-

similarity.

The similarity dimension
Mandelbrot [7] thinks that 'the plethora' of distiefinitions of the fractal

dimension should be reduced to two: the similaditgension and Hausdorff
dimension. Thaimilarity dimension(Ds) is basic dimension related to all self-similar
(fractal) sets. We shall define this dimension gghre von Koch set as an example. If
all the scales of the prefractals at the stag@os$irtuction z are reduced by a fadtor

= 3, the numbeN, ., of the scales at the stage 1 becomes four times larger than at

z Indeed, since
1
M1 :ér NZ+1 = 4'NZ (6)

it follows that

for every z. Generally, sind¢ >F for everyz, that fact can be presented by the

expression



N = FPs (7
whereDs must be larger than 1. This relationship represtrd definition othe
similarity dimension Q This also can be presented as

D _logN

°* " logF (8)

For the von Koch set this dimensiorfs= log 4/log 3 = 1.262.

The Hausdorff dimension

One of the main differences between the methodimctfal geometry and
fractal analysis is in treating the numidgr In fractal geometry this value is the
number of segments (scales) counterf'atage of construction carried out using the
scale lengtit, at theZ" stage of iteration. In fractal analysis this valsteown as\,
represents the minimum number of the 'balls' avargsize () necessary to
completely 'cover' the border (or a line) of angmaA ball consists of all points
within a distance from a center. In one dimension balls are linessags, in two
dimensions balls are circles, and in three dimerssimlls are spheres. If one covers
the object with balls of radiusit must be doneo that every point of the object is
enclosed within at least one ball. This may regthieg some of the balls overlap. One
should find the minimum number of balir) of sizer needed to cover the object

Consider the numbe(r) of balls of radius at mostrequired to cover an
object completely. Whenis small,N(r) is large (similar relation exists between
number of segments and scale length in fractal gagin TheHausdorff dimension
d is a number found such tHsr) grows with 1f%, asr approaches zero. The precise
definition requires that the dimensidrso defined is a critical boundary between the
growth rates that are insufficient to cover theeghjand the growth rates that are
overabundant [18, 19]. The Hausdorff dimensias theoretically rather complex but
it is a successor to some less sophisticated larbaictice very similar dimensions

such as the capacity dimension.

The modified capacity dimension



The similarity dimension can only be used to amalgeometrical (self-similar)
fractal sets. Therefore, it would be necessaneteeenlize the similarity dimension.
The most important results of such generalizatrentlae Hausdorff and capacity
dimension. These two dimensions are quite similgrijut the Hausdorff dimension
Is rather sophisticated, being a subject of matliealaneasure theory, and not

suitable for practical use in fractal geometry. Tapacity dimension is given by

D, :””}) logN(r) 9)
"~ Iog(ij

It is suitable for determining irregularly shapesbgetrical or natural objects. Since

the logarithm is defined only for dimensionlessuea not for physical quantities like

1/r, we shall defineghe modified capacity dimensias

(10)

wherer, is areference scal@0, 21]. We will show that this quantity does not
influence the common determination of the capasityension ((Eg. (9)). Such
guantityro ((Eqg. (10)) is included into the definition of thapacity dimension,
because the ratidr, is dimensionless quantity.

If we submit Eq. (5) into the last definition ((E40)) and put —
0, one can see that the expression in Eq. (10) represents an undetethformoo/
oo, but nevertheless the limit of the quotient in Bd)) may exist. Application of the
corresponding I'H6pital's rule often converts adetermined form to a determined
one allowing easy evaluation of the limit. 1@fr) = F(r)/G(r). Suppose, generally,
that imF(r) — oo and lim G (r) = oo whenr — 0. If these functions are
differentiable on an open interv@d, ) containing 0, if lim [F'(r)/G'(r)] exists and

G'(r) # O for allr from the interval, then



iim F () =i F11).
r-0 G(r) r-0 G'(r)

(11)

If the derivatives of(r) = N(r) andG(r) = -log (/ro)

1
d r r 1
—| -log(—) |=-——%>—=- :
dr{ g(ro)} LEInlO r nl10
r.O
L TN 1 o (201 s MY
dr £ On10 r In10

are inserted into Eq. (10), the limes of this egpren (constant!) is
D=1+a.

(12)
For the von Koch set D = 1.262 which is in accordance with the value inigte using
the similarity dimension method. The expressioregibey Eq. (12) sometimes is
presented as a definition of the fractal dimensidns statement is only a
consequence of the definition given by Eq. (10).tRat reason Eq. (5) may be
presented as

N(r)=g80"

(13)

Equation (13) reveals as decreasing straight-lioes pvhen the results of
counting the numbers of segments are plotted oAdggaxes against the values of
the segment length. Thus if these data are prasantubly logarithmic paper and
fitted by a decreasing straight line, its coeffitief decreasing represents the fractal
dimensionD (Fig. 3). It should also be noticed that it wi#d twrong to enter the
logarithms of the data into Descartes co-ordingstesn, because, as we have

noticed, logarithms of physical quantities havephgsical sense.

Fractal dimension of biological objects



Unlike geometric fractal objects, biological aratural elements do express
statistical self-similar patterns and fractal pnbjes within an interval of scales,
termed the ‘scalingwindow’ [20]. It is defined experimentally by upper amaver
limits in which a direct relationship between theservation scale and the measured
size/length of the object or the frequency of ageral event can be verified and in
turn quantified by a peculi@. The straight line fitting ceases out of the saali
limits to become a sigmoid curve with an asymptotieven bi-asymptotic course, as
revealed by several authors [26-29]. In other wottis measured dimensional
parameters remain unaffected by further changessiiution exceeding both limits.
However, real “fractality” exists only when thejerimental scaling range covers at
least two orders of magnitude, although fractadigr many orders of magnitude has

been observed in various natural fields [30].

DISCUSSION

It is noticed before thajeometrical self-similarityneans that every small
piece of an object resembles the whole object. Markors tried to demonstrate
graphically this definition [1, 4, 14]. We showdtht such set of objects can be self-
similar if their generating elements are geomellsicamilar. Any two prefractals of
the von Koch set are not geometrically similar,tcany to their generating elements.
This is obvious from Fig. 1B and C: these two insmageuld only be visually alike,
but not geometrically similar.

Losa and Nonnenchamer [20] used the expredéfore 1> €°, wheres is the
unit length(corresponds to ouj andl, is thereference scaleThe valud,’
corresponds to the prefac(Eq. (13)). It is important to notice that thesghars
underlined that depended oD, which is not directly visible in the present study.
Using this method they presented their dimensisrgewer law scaling

Bassingthwaighte et al. [1] noted that the capatityension tell us how much
balls needed to cover the object as the size dbdlie () decreases. In the analytical

definition of capacity dimension there exists Iag ). West and Deering [11] defined



the similarity dimension as the ratio of two loglams In N/ In (1/r). In defining the
box-counting dimension Falconer [18] showed lowed apper box-counting
dimension by the expression containing dogheres is the diameter of a
corresponding set. Edger [19] also use log (1/thendefinition of the upper box-

counting dimension, wheras a diameter of the set.

CONCLUSION

Since some concepts in fractal geometry are detexhilescriptively and/or
gualitatively, this paper provides their exact neatlatical definitions or explanations,
and Richardson’s coastline method.
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LEGENDS TO FIGURES

Figure 1. Sequential construction of the von Koch curve @8t The initiator is the
equilateral triangle of the side lengia (B) The first stage of construction% 1).
(C) The second stage of constructiar ). Details below the drawings B and C

represent the generating elements of the von Koefngetals shown in B and C.

Figure 2. Hyperbolic decrease of the perimeters for the vontKcurves set. The
perimeter I, ) of the von Koch prefractals plotted againstgbgment lengthry).

Figure 3. Numbers of segmentd, shown on log-log axes against the length of a
segment,. The graph is obtained using equation inscribetherpicturesi is the

coefficient of determination.
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