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ABSTRACT 

 

Background. The aim of the present study was to address the dimensional 

imbalances in fractal geometry, define the modified capacity dimension, calculate its 

value, relate its value with the scaling exponent and show that such a definition 

satisfies basic demands of physics, before all the dimensional balance in 

mathematical equations used in applied sciences. 

 Methods. The study was performed using the basic rules from fractal geometry, 

l'Hôpital's theorem and other relevant facts from geometry and calculus. 

Results. It was offered the quantitative determination of the self-similarity using the 

von Koch fractal set as an example. The main result was also the formula for the 

modified capacity dimension and its relationship to the scaling exponent and fractal 

dimension. 

Conclusion. The text includes some important modifications and advantages in 

fractal theory and allows better communication between fractal geometry and wide 

readership. It is important to notice that these modifications and quantifications did 

not affect already known facts in fractal geometry. 

 

 

 

 

 

 

 

 

 

 

 



 

BACKGROUND 

 

Fractal geometry has proven to be a useful tool in analysis of various 

phenomena in numerous natural sciences [1]. Although it has been widely applied 

and used for quantitative morphometric studies, mainly in calculating the fractal 

dimensions of objects [2], there are still some unresolved issues that need to be 

addressed. Since some concepts of fractal geometry are determined descriptively 

and/or qualitatively, this paper offers their more exact mathematical definitions or 

explanations. 

Although standard quantitative methods in science are based on classical 

Euclidean geometry [3], fractal geometry is developed as a new geometry of nature 

[2, 4-6]. It was conceived in 1975 by Benoît B. Mandelbrot [7], with the aim to 

describe the complexity and irregularity of shapes and processes in nature [1]. Early 

work on fractal geometry showed that most commonly biological patterns were 

characterized by fractal geometry [1, 8-12]. Up to now fractal geometry is being used 

in diverse research areas [13-16] and is proving to be an increasingly useful tool. 

When the physical or biological problem is stated in mathematical terms, 

dimensional balance should be a routine part of the solution of any problem. 

Exponents and logarithms are always dimensionless [17]. When dimensioned 

quantities appear in exponents or in logarithms, they must combine with other 

dimensioned quantities so that their quotient or product is dimensionless. It seems 

that some of the authors who work in biomedical sciences do not take care of these 

facts. The problem is particularly distinct in defining the fractal dimensions [1, 11, 

18, 19]. Fortunately, there are some exceptions [20, 21]. One of the main aims of the 

present study is to define and discuss physically correct modified capacity dimension, 

and relate it with the scaling exponent and fractal dimension.   

 

METHODS AND RESULTS 

 



 

The fractal set 

Fractal geometry was conceived in 1975 by Mandelbrot [7], after his extensive 

work describing the complexity of forms and processes in nature [1]. Nowadays 

fractal geometry is proving to be an increasingly useful tool for characterizing 

biological and other patterns [2, 6, 15, 22, 23]. 

Fractals are classified into geometrical and statistical [4, 5, 22, 23]. Each 

geometrical fractal should be considered as an infinite ordered set of fractal pieces 

defined on a metric space. To determine a fractal set we need to specify four things 

[1, 11, 22]: (1) the shape of a starting object - the initiator, (2) the iterated algorithm 

- enabling its iterative application on the initiator and then, repeatedly, on all obtained 

objects (the generators), (3) the conditions - which these generators should satisfy, 

before all, the properties of self-similarity, scaling and scale-invariance, and (4) the 

fractal dimension D - as the main quantifier to measure complexity of the objects. In 

that case, such objects (generators) are called prefractals [1, 3, 5]. The final result of 

such infinite procedure is the limit fractal [4, 7]. The initiator, prefractals and limit 

fractal represent the geometrical fractal set [11, 24].  

Basic definitions and laws of fractal planimetry can be demonstrated on some 

classical fractal models [3, 11]. For that purpose we chose the triadic (snowflake) von 

Koch curve set. 

 

Von Koch fractal set 

The sequential construction of the von Koch curve set begins with the initiator, 

which is an equilateral triangle of the side length r0 (Fig. 1A). The iterated algorithm 

to generate the set of the von Koch curves (known as prefractals) is to recursively 

reduce the straight line segment (or the scale) by 1/3 exchanging repeatedly the 

middle third of each side of the initiator, or a preceding generator, with two sides of a 

smaller, equilateral triangle whose side is one-third the length of a previous side. The 

result after the first iteration (the stage of construction z = 1) is shown in Fig. 1B, and 



 

that after the second iteration (the stage of construction z = 2) in Fig. 1C. 

Continuation of this process results in the limit von Koch curve. 

  

For the von Koch generators, the length of a segment at the zth stage of 

construction (rz) and the number of segments at the same stage (Nz) are, respectively, 
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where r0 is the side length of the initiator (Fig. 1A). The length of the fractal curve, 

actually the perimeter since the curve is closed, (Lz), is defined as a product of the 

number of segments and the length of a segment, at the zth stage of construction, 
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The inverse power law 

From Eq. (2) it is evident that the perimeter of the von Koch prefractals 

diverges as z approaches infinity. If along the horizontal coordinate axis we put the 

values rz = 1/3z for z = 0,1,2,3, ... and along the vertical coordinate axis the values of 

Lz = 3·(4/3)z also for z = 0,1,2,3, ..., and fit the power function to these data using 

Microsoft Excel software, the graph shown in Fig. 2 is obtained. The corresponding 

fitting parameters are also carried out and shown in  

262.0

3

z

z
r

L =        (3) 

with the coefficients of determination R2 = 1 and where r0 = 1 cm for visual clarity. 

Generally, if we wish to express L as a function of r for similar fractal set, two 

constants of proportionality (α and β) should be used, thus the length can be written 

as 

αr

β
L = .       (4) 

The value β is the prefactor and α is the scaling exponent. From Eq. (3) it is seen that 

for the von Koch fractal set β = 3 and α = 0.262. We say that the length of a curve (a 



 

prefractal) scales with the length of the corresponding fractal segment. Or, 

mathematically, Lz is a unique function of rz. 

The simplest scaling relationship has the power law form [1]. The 

mathematical form of such scaling is an inverse power law scaling (Eq. (4)). It 

describes how a property L of the system (say a perimeter of the von Koch set) 

depends on the scale r at which it is measured [1]. Thus, this scaling relationship 

shows how the perimeter of a prefractal depends on the length of its segment: the 

smaller the length of the segment, the larger the perimeter. Since L = N·r (the 

expression known as the Richardson-Mandelbrot equation [20]), from Eq. (4) it 

follows that 
)1( αβ +−⋅= rN        (5) 

 

Geometrical self-similarity 

The object’s property known as self-similarity was first coined by Mandelbrot 

[7] and can be geometrical or statistical [1, 11, 24].  

A fractal pattern is said to be geometrically self-similar if each small piece of it 

is an exact replica (i.e. ‘‘duplicate’’) of the whole object [1, 4]. Thus, the self-

similarity qualitatively means that every small piece of an object resembles the whole 

object [1, 11]. This definition of the concept ‘geometrical self-similarity’ should be 

quantified since small pieces that constitute geometrical or natural objects are rarely 

identical copies of the whole object [22]. 

We have offered a more exact interpretation of this descriptive definition 

introducing a generating element of a generator as a “small piece” [5]. A generator is 

usually made up of straight-line segments (for instance, see Fig. 1). A particular and 

logical concatenation of some segments of a generator could be thought of as the 

generating element [11] of a generator if the whole object can be completely built 

with such elements by their translations and/or rotations. 

In our example shown in Fig. 1 the generators of the von Koch prefractals, at 

the first and second stages of construction, have the generating elements made up of 



 

four equal segments each, as shown as details below the drawings in Fig. 1B and C. 

For example, the drawing in Fig. 1B can be subdivided into three generating 

elements, that in Fig. 1C into 12 elements, and so on.  

Two generating elements of any two generators of a fractal set can be 

geometrically similar or not. According to the definition of similarity in Euclidean 

planimetry, two generating elements of the generators at stages z and z + 1 (say, those 

in Fig. 1B and C) are similar to each other if (a) the ratio of the measure of a segment 

of the generating element at stage z + 1 and the measure of the corresponding 

segment of the element at stage z is constant for all pairs of corresponding segments 

(e.g., for the four pairs of segments of the two mentioned details in Fig. 1) and for all 

z, and (b) the angles between the pairs of corresponding segments of the two 

generating elements are congruent. If the generating elements of the generators at 

stages z and z + 1 are similar for every z, we say that the whole class of the generators 

is geometrically self-similar, or, that this set has the property of geometrical self-

similarity.  

 
The similarity dimension 

Mandelbrot [7] thinks that 'the plethora' of distinct definitions of the fractal 

dimension should be reduced to two: the similarity dimension and Hausdorff 

dimension. The similarity dimension (Ds) is basic dimension related to all self-similar 

(fractal) sets. We shall define this dimension using the von Koch set as an example. If 

all the scales of the prefractals at the stage of construction z are reduced by a factor F 

= 3, the number Nz +1 of the scales at the stage z + 1 becomes four times larger than at 

z. Indeed, since  
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it follows that  
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for every z. Generally, since N >F for every z, that fact can be presented by the 

expression 
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where Ds must be larger than 1. This relationship represents the definition of the 

similarity dimension Ds. This also can be presented as 

    														
F

N
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For the von Koch set this dimension is Ds = log 4/log 3 = 1.262. 

 

The Hausdorff dimension 

One of the main differences between the methods of fractal geometry and 

fractal analysis is in treating the number Nz. In fractal geometry this value is the 

number of segments (scales) counted at zth stage of construction carried out using the 

scale length rz at the zth stage of iteration. In fractal analysis this value, shown as N, 

represents the minimum number of the 'balls' of a given size (r) necessary to 

completely 'cover' the border (or a line) of an image. A ball consists of all points 

within a distance r from a center. In one dimension balls are line-segments, in two 

dimensions balls are circles, and in three dimensions balls are spheres. If one covers 

the object with balls of radius r it must be done so that every point of the object is 

enclosed within at least one ball. This may require that some of the balls overlap. One 

should find the minimum number of balls N(r) of size r needed to cover the object.  

Consider the number N(r) of balls of radius at most r required to cover an 

object completely. When r is small, N(r) is large (similar relation exists between 

number of segments and scale length in fractal geometry). The Hausdorff dimension 

d is a number found such that N(r) grows with 1/rd, as r approaches zero. The precise 

definition requires that the dimension d so defined is a critical boundary between the 

growth rates that are insufficient to cover the object, and the growth rates that are 

overabundant [18, 19]. The Hausdorff dimension d is theoretically rather complex but 

it is a successor to some less sophisticated but in practice very similar dimensions 

such as the capacity dimension.    

  

The modified capacity dimension 



 

 The similarity dimension can only be used to analyze geometrical (self-similar) 

fractal sets. Therefore, it would be necessary to generalize the similarity dimension. 

The most important results of such generalization are the Hausdorff and capacity 

dimension. These two dimensions are quite similar [1], but the Hausdorff dimension 

is rather sophisticated, being a subject of mathematical measure theory, and not 

suitable for practical use in fractal geometry. The capacity dimension is given by 
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It is suitable for determining irregularly shaped geometrical or natural objects. Since 

the logarithm is defined only for dimensionless values not for physical quantities like 

1/r, we shall define the modified capacity dimension as 

    





























−==

→

0

0

log

)(log
lim

r

r

rN
DD

r
c      (10) 

where r0 is a reference scale [20, 21]. We will show that this quantity does not 

influence the common determination of the capacity dimension ((Eq. (9)). Such 

quantity r0 ((Eq. (10)) is included into the definition of the capacity dimension, 

because the ratio r/r0 is dimensionless quantity.                                                                                                                                   

 If we submit Eq. (5) into the last definition ((Eq. (10)) and put r →

0,			one	can	see	that	the expression in Eq. (10) represents an undetermined form	∞/

∞, but nevertheless the limit of the quotient in Eq. (10) may exist. Application of the 

corresponding l'Hôpital's rule often converts an undetermined form to a determined 

one allowing easy evaluation of the limit. Let Q(r) = F(r)/G(r). Suppose, generally, 

that lim F(r) 	→ ∞ and lim G (r) 	→ ∞ when r → 0. If these functions are 

differentiable on an open interval �0,∞�	containing	0, if	lim [F'(r)/G'(r)] exists and 

G'(r) ≠ 0 for all r from the interval, then 



 

      .
)('

)('
lim

)(

)(
lim

00 rG

rF

rG

rF
rr →→

=     

 (11) 

If the derivatives of F(r) = N(r) and G(r) = -log (r/r 0) 
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are inserted into Eq. (10), the limes of this expression (constant!) is  

 	D = 1 + !.	      

 (12) 

For	the	von	Koch	set D = 1.262 which is in accordance with the value obtained using 

the similarity dimension method. The expression given by Eq. (12) sometimes is 

presented as a definition of the fractal dimension: This statement is only a 

consequence of the definition given by Eq. (10). For that reason Eq. (5) may be 

presented as   
DrrN −⋅= β)(       

 (13) 

Equation (13) reveals as decreasing straight-line plots when the results of 

counting the numbers of segments are plotted on log–log axes against the values of 

the segment length. Thus if these data are presented in doubly logarithmic paper and 

fitted by a decreasing straight line, its coefficient of decreasing represents the fractal 

dimension D (Fig. 3). It should also be noticed that it will be wrong to enter the 

logarithms of the data into Descartes co-ordinate system, because, as we have 

noticed, logarithms of physical quantities have no physical sense.  

 

Fractal dimension of biological objects 



 

 Unlike geometric fractal objects, biological and natural elements do express 

statistical self-similar patterns and fractal properties within an interval of scales, 

termed the ‘‘scaling window" [20]. It is defined experimentally by upper and lower 

limits in which a direct relationship between the observation scale and the measured 

size/length of the object or the frequency of a temporal event can be verified and in 

turn quantified by a peculiar D. The straight line fitting ceases out of the scaling 

limits to become a sigmoid curve with an asymptotic or even bi-asymptotic course, as 

revealed by several authors [26-29]. In other words, the measured dimensional 

parameters remain unaffected by further changes in resolution exceeding both limits. 

However, real ‘‘fractality’’ exists only when the experimental scaling range covers at 

least two orders of magnitude, although fractality over many orders of magnitude has 

been observed in various natural fields [30]. 

 

DISCUSSION 

It is noticed before that geometrical self-similarity means that every small 

piece of an object resembles the whole object. Many authors tried to demonstrate 

graphically this definition [1, 4, 14]. We showed that such set of objects can be self-

similar if their generating elements are geometrically similar. Any two prefractals of 

the von Koch set are not geometrically similar, contrary to their generating elements. 

This is obvious from Fig. 1B and C: these two images could only be visually alike, 

but not geometrically similar. 

Losa and Nonnenchamer [20] used the expression N(ε) = l0
D ε-D, where ε is the 

unit length (corresponds to our r) and lo is the reference scale. The value l0
D 

corresponds to the prefactor β (Eq. (13)). It is important to notice that these authors 

underlined that β depended on D, which is not directly visible in the present study. 

Using this method they presented their dimensionless power law scaling.  

Bassingthwaighte et al. [1] noted that the capacity dimension tell us how much 

balls needed to cover the object as the size of the balls (r) decreases. In the analytical 

definition of capacity dimension there exists log (1/r). West and Deering [11] defined 



 

the similarity dimension as the ratio of two logarithms ln N/ ln (1/r). In defining the 

box-counting dimension Falconer [18] showed lower and upper box-counting 

dimension by the expression containing log δ where δ is the diameter of a 

corresponding set. Edger [19] also use log (1/r) in the definition of the upper box-

counting dimension, where r is a diameter of the set.  

 

CONCLUSION 

Since some concepts in fractal geometry are determined descriptively and/or 

qualitatively, this paper provides their exact mathematical definitions or explanations, 

and Richardson’s coastline method. 
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LEGENDS TO FIGURES 

 

Figure 1. Sequential construction of the von Koch curve set. (A) The initiator is the 

equilateral triangle of the side length r0. (B) The first stage of construction (z = 1). 

(C) The second stage of construction (z = 2). Details below the drawings B and C 

represent the generating elements of the von Koch prefractals shown in B and C.  

 

Figure 2. Hyperbolic decrease of the perimeters for the von Koch curves set. The 

perimeter (Lz ) of the von Koch prefractals plotted against the segment length (rz).  

 

Figure 3. Numbers of segments Nz shown on log-log axes against the length of a 

segment rz. The graph is obtained using equation inscribed on the pictures. R2 is the 

coefficient of determination. 
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FIGURE 3 

 



 

 
 

 

 
 


